Accelerating block coordinate descent for nonnegative tensor factorization
نویسندگان
چکیده
This paper is concerned with improving the empirical convergence speed of block-coordinate descent algorithms for approximate nonnegative tensor factorization (NTF). We propose an extrapolation strategy in-between block updates, referred to as heuristic restarts (HER). HER significantly accelerates most existing dense NTF, in particular challenging computational scenarios, while requiring a negligible additional budget.
منابع مشابه
DID: Distributed Incremental Block Coordinate Descent for Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) has attracted much attention in the last decade as a dimension reduction method in many applications. Due to the explosion in the size of data, naturally the samples are collected and stored distributively in local computational nodes. Thus, there is a growing need to develop algorithms in a distributed memory architecture. We propose a novel distributed a...
متن کاملA Fast Algorithm for Nonnegative Tensor Factorization using Block Coordinate Descent and an Active-set-type method
Nonnegative factorization of tensors plays an important role in the analysis of multi-dimensional data in which each element is inherently nonnegative. It provides a meaningful lower rank approximation, which can further be used for dimensionality reduction, data compression, text mining, or visualization. In this paper, we propose a fast algorithm for nonnegative tensor factorization (NTF) bas...
متن کاملA Block Coordinate Descent Method for Regularized Multiconvex Optimization with Applications to Nonnegative Tensor Factorization and Completion
This paper considers regularized block multi-convex optimization, where the feasible set and objective function are generally non-convex but convex in each block of variables. We review some of its interesting examples and propose a generalized block coordinate descent method. (Using proximal updates, we further allow non-convexity over some blocks.) Under certain conditions, we show that any l...
متن کاملA Block Coordinate Descent Method for Multi-convex Optimization with Applications to Nonnegative Tensor Factorization and Completion
This paper considers block multi-convex optimization, where the feasible set and objective function are generally non-convex but convex in each block of variables. We review some of its interesting examples and propose a generalized block coordinate descent method. Under certain conditions, we show that any limit point satisfies the Nash equilibrium conditions. Furthermore, we establish its glo...
متن کاملAlgorithms for nonnegative matrix and tensor factorizations: a unified view based on block coordinate descent framework
We review algorithms developed for nonnegativematrix factorization (NMF) and 1 nonnegative tensor factorization (NTF) from a unified view based on the block coordinate 2 descent (BCD) framework. NMF and NTF are low-rank approximation methods for matri3 ces and tensors in which the low-rank factors are constrained to have only nonnegative 4 elements. The nonnegativity constraints have been shown...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Numerical Linear Algebra With Applications
سال: 2021
ISSN: ['1070-5325', '1099-1506']
DOI: https://doi.org/10.1002/nla.2373